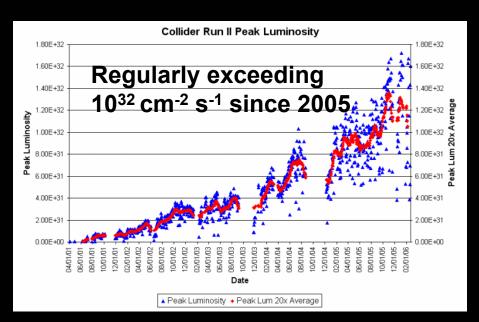
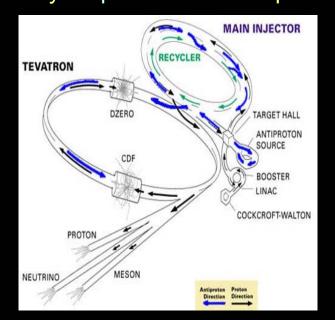

CDF Hot Topics

Outline

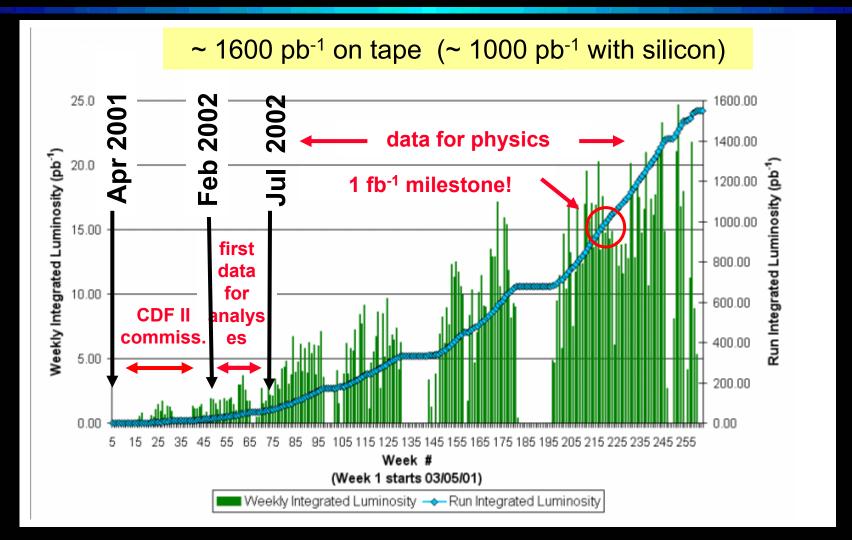
Caveat: this will NOT be a wide overview of the latest CDF results.

Focus on selected topics (charm-less *B* decays in two charged particles) which will be described in detail.


Analysis of such modes provides CDF with a physics program competitive (B^0 modes), and complementary (B^0 _s modes) to B-factories. Well suited to illustrate the methods used in flavor physics at CDF.


- ✓ Tevatron and CDF;
- ✓ HF physics at hadron colliders;
- ✓ Trigger on displaced tracks;
- ✓ CP asymmetry in $B^0 \longrightarrow K^+\pi^-$ decays;
- $\checkmark \Delta \Gamma_s / \Gamma_s \text{ in } B^0_s \longrightarrow K^+ K^- \text{ decays};$
- ✓ search for FCNC $B^0_{(s)} \longrightarrow \mu^+ \mu^-$ decays.

The Tevatron pp collider


Superconducting proton-synchrotron.....: 36 (proton) \times 36 (antiproton) bunches a collision every 396 ns at \sqrt{s} = 1.96 TeV # of interactions per bunch-crossing......: < N $>_{poisson}$ = 2 (at 10^{32} cm $^{-2}$ s $^{-1}$) Luminous region size......: 30 cm (beam axis) \times 30 μ m (transverse) need long Si-vertex small wrt $c\tau(B)$ ~ 450 μ m

Luminosity....: record peak is 1.82×10^{32} cm⁻² s⁻¹ typically 18 pb⁻¹ / week on tape

Luminosity

Stable data taking efficiency: > 85%. Results here use 360 - 800 pb⁻¹

The CDF II detector

Some resolutions $p_{\rm T}{\sim}0.15\%~p_{\rm T}~({\rm c/GeV})$ J/ Ψ mass ${\sim}14~{\rm MeV/c^2}$ EM E ${\sim}~16\%/{\sqrt{\rm E}}$ Had E ${\sim}~80\%/{\sqrt{\rm E}}$ $d_o {\sim}~40~{\rm \mu m}$ (includes beam spot)

1.4 T magnetic field Lever arm 132 cm 132 ns front end chamber tracks at L1 silicon tracks at L2 25000 / 300 / 100 Hz with dead time < 5%

time-of-flight

110 ps at 150 cm

p, K, π identific.

 2σ at p < 1.6 GeV/c

7 to 8 silicon layers 1.6 < r < 28 cm, |z| < 45 cm

 $|\eta| \leq 2.0 \ \sigma(hit) \sim 15 \ \mu m$

96 layer drift chamber

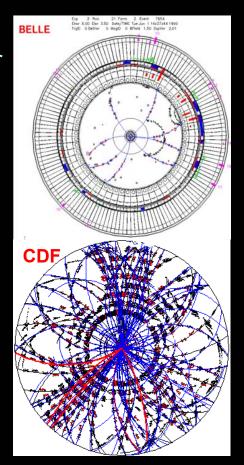
 $|\eta| \le 1.0 44 < r < 132 \text{ cm},$ |z| < 155 cm 30 k channels, $\sigma(\text{hit}) \sim 140 \text{ }\mu\text{m}$ $dE/dx \text{ for } p, K, \pi, \text{ e identification}$

scintillator and tile/fiber sampling calorimetry $|\eta| < 3.64$

μ coverage |η| ≤ 1.5 84% in φ

Heavy Flavor physics at the Tevatron

The Good

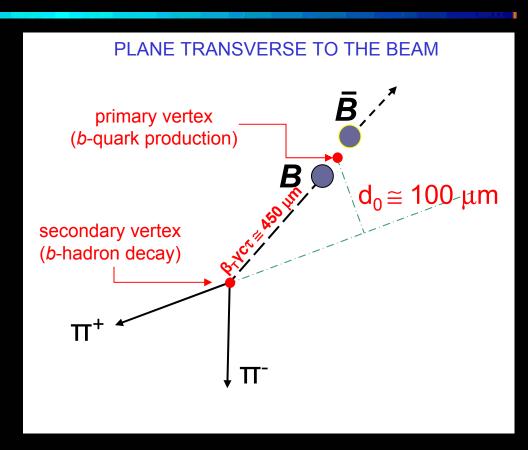

 $p\overline{p} \to b\overline{b}$ x-section is O(10⁵) larger than e⁺e⁻ $\to b\overline{b}$ at Y(4S) or Z⁰. Copious samples of all *b*-hadrons, B^+ , B^0 , B^0 _s, B_c , Λ_b , Ξ_b etc,via strong interaction.

The Bad

Total inelastic x-section ×10³ larger than $\sigma(b\overline{b})$ and $p_T(B) \sim 5$ GeV/c: need high bckg rejection. Incoherent production and low (~10%) acceptance for "other B": hard flavor-tagging.

...and The Ugly

multiple interactions/event and debris from interacting \overline{p} and p: messy environments with large combinatorics. Challenging reduction from 1.7 MHz collision-rate, to ~100 Hz tape-writing.

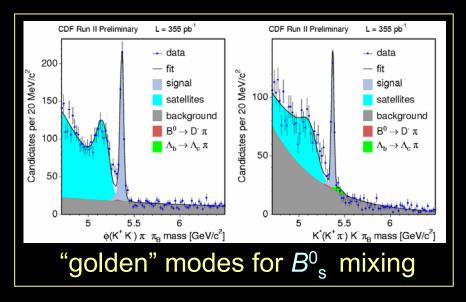


Need highly selective trigger

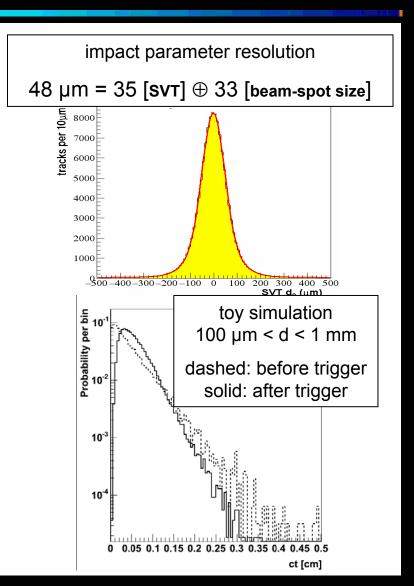
Heavy flavor signature

"Long" (~1.5 ps) lifetime of *b*-hadrons: a powerful signature against light-quark background. Before decaying, sufficiently boosted *b*-hadrons fly a distance resolvable with vertex detectors.

In Run I, CDF exploited this in offline analyses.
In Run II, we exploit it at trigger level. An experimental challenge that requires:



- (1) <u>high resolution</u> vertex detector (silicon)
- (2) read out silicon r-φ side (212,000 channels);
- (3) do pattern recognition and track fitting in silicon.


within 25 µs,

Displaced track trigger: pros and cons

Collection of very high-purity samples of hadronic *B* (and *D*) decays.

price to pay: trigger-bias distorts the proper-time distributions. Introduce complexity in lifetime-based analyses,more later...

Triggering heavy flavors

Traditional *B*-trigger at hadronic collider: look for one $(B \rightarrow lvX)$ or two leptons $(B \rightarrow J/\psi X)$ exploiting clear signature and ~20% of total width.

For the first time, trigger HF without leptons: rare hadronic B decays.

conventional

di-muon

 $B \longrightarrow \text{charmonium}$ $B \longrightarrow \mu\mu$

two muons with:

 $p_T > 1.5 \text{ GeV} \qquad |\eta| < 1$

partially new approach

electron or μ and displaced track

 $B \rightarrow lvX$

electron (or μ) with:

 $p_T > 4$ (or 1.5) GeV $|\eta| < 1$

and one track with:

 $p_T > 2.0 \text{ GeV} \quad d_0 > 120 \ \mu\text{m}$

new approach

two displaced tracks

 $B \rightarrow hh$

two tracks with:

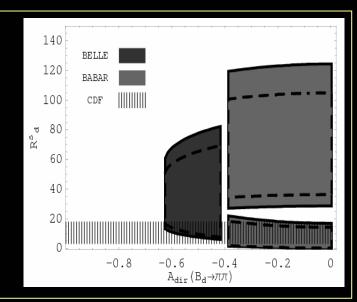
 $p_T > 2.0 \text{ GeV}$

 $\Sigma p_T > 5.5 \text{ GeV}$

 $d_0 > 100 \ \mu \text{m}$

CP Asymmetry in $B^0 \to K^+\pi^-$ decays and $B^0_s \to K^+K^-$ lifetime

Motivation


Interpretation of *B* results often plagued by uncertainties from non-perturbative QCD. Symmetries allows partial cancellation of the unknowns.

Joint study of B^0 and B^0_s 2-body decays into charged kaons and pions (KK, $\pi\pi$ and $K\pi$) plays a key role: related by subgroups of SU(3) symmetry.

Until the beginning of the planned Y(5S) run at Belle, only CDF has simultaneous access to both $B^0/B^0_s \longrightarrow h^+h^-$ decays thus exploiting an original physics program complementary to *B-factories*.

BR can constrain theory: compare CDF measurements with allowed regions in spaces of $B^0 \longrightarrow \pi^+\pi^-$ and $B^0_s \longrightarrow K^+K^-$ observables (Y(4S)) and theory) provides a probe for both γ and NP

(Fleischer and Matias PRD66: 054009,2002 - London and Matias PRD70:031502, 2004.)

Motivation

These modes include $B^0 \longrightarrow K^+\pi^-$, where direct CP asymmetry was observed for the first time in in B sector (B-factories).

Large (~10%) effect established, but still many things to understand, e.g. asymmetry in B^0 not compatible with B^+ as expected.

(Gronau and Rosner, Phys.Rev.D71:074019, 2005).

Additional experimental input is helpful: copious yields at Tevatron make CDF a major player in the direct-CPV game.

Compare rates and asymmetries of $B^0 \longrightarrow K^+\pi^-$ and $B^0_s \longrightarrow K^-\pi^+$ - unique to CDF - to probe NP with no need for assumptions, just basing on SM. (Lipkin, Phys.Lett.B621:126, 2005)

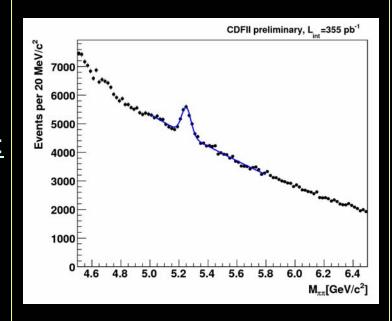
From lifetime of $B^0_s \longrightarrow K^+K^-$ (unique to CDF), information on the relative width-difference $\Delta\Gamma_s/\Gamma_s$. Supplements $B^0_s \longrightarrow J/\psi \phi$ for upper bounds on B^0_s mixing frequency. Can be strongly affected by new, CP-violating physics.

Trigger confirmation

TRIGGER REQUIREMENTS

Two oppositely-charged tracks (i.e. *B* candidate) from a <u>long-lived decay</u>:

- ✓ track's impact parameter >100 µm;
- ✓ B transverse decay length > 200 µm;

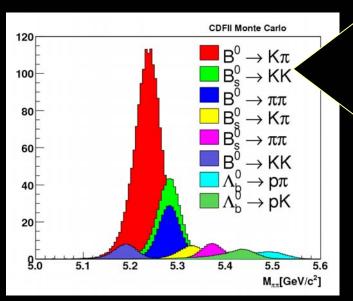

B candidate pointing back to primary vertex:

✓ impact parameter of the $B < 140 \mu m$;

reject light-quark background from jets:

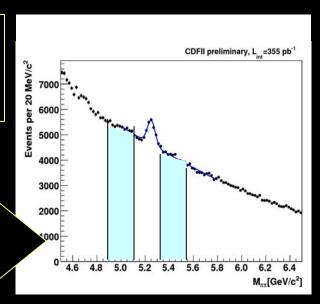
- √ transverse opening angle [20°, 135°];
- \checkmark p_{T1} and p_{T2} > 2 GeV;
- $\sqrt{p_{T1} + p_{T2}} > 5.5 \text{ GeV}.$

offline confirmation of trigger cuts on track pairs fit to a common vertex:


a bump of ~3850 events with S/B \approx 0.2 (at peak) in $\pi\pi$ -invariant mass

"optimized" cut optimization

Optimize cuts by minimizing the <u>average expected statistical resolution</u> on A_{CP}. Its expression in terms of S and B is determined from actual resolutions observed in analysis of toy-MC samples


Gain ~10% improvement in resolution *versus* standard S/√(S+B)

<u>Unbiased</u> cut optimization: for any combination of cuts, evaluate the above score function; optimal cuts are found when the function reach its maximum.

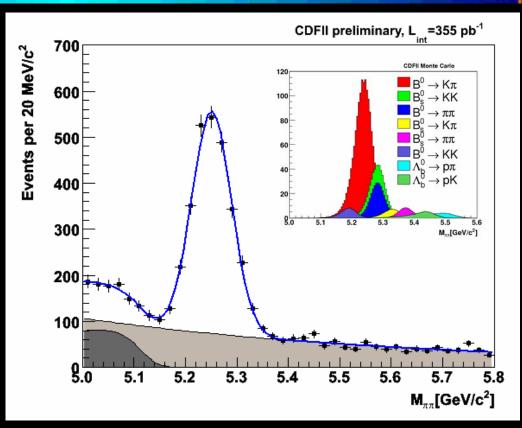
signal yield S is derived from MC simulation

background B from data (mass sidebands)

FPCP - April 9th 2006

Diego Tonelli, CDF

Signal extraction


Signal yield: ~2300 events S/B ≈ 6.5 (peak value)

~1.7× reduction in signal yield ~50× reduction in background

Crucial isolation:

fraction of p_T carried by the B after fragmentation. Rejects 18% of sig. and ~4× of bckg

Despite excellent mass resolution, modes <u>overlap into an unresolved mass</u> <u>peak.</u> No event-by-event PID.

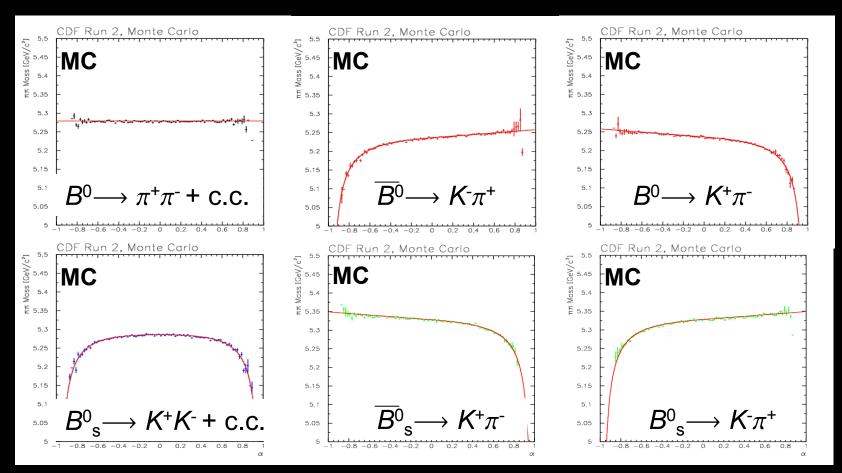
Hence, fit signal composition with a Likelihood that combines information from kinematics (masses and momenta) and particle ID (dE/dx).

Peak composition handle 1: kinematics

Exploit the (small) kinematic differences among different modes:

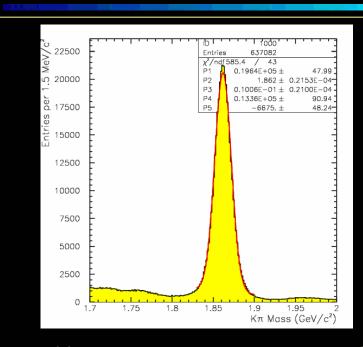
4 values of the invariant mass of the track pair, resulting from all possible mass assignments ($K\pi$, πK , KK, $\pi\pi$), would need complicated joint distribution in the likelihood.

Use instead approximate relation between any 2 invariant masses obtained with 2 arbitrary mass assignment to the tracks (if m < p):


2-body invariant mass with
$$\overline{m_1}$$
 and $\overline{m_2}$ mass assignments
$$M_{m_1,m_2}^2 \approx M_{\overline{m_1},\overline{m_2}}^2 + \left(1 + \frac{p_1}{p_2}\right) \left(m_2^2 - \overline{m}_2^2\right) + \left(1 + \frac{p_2}{p_1}\right) \left(m_1^2 - \overline{m}_1^2\right)$$

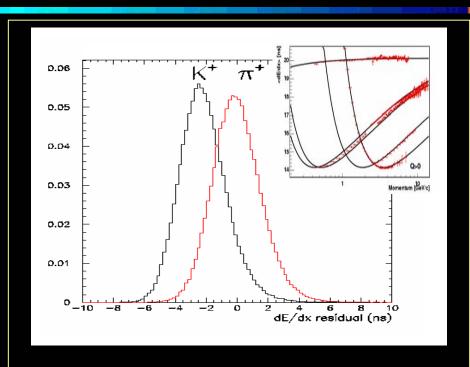
2-body invariant mass with m_1 and m_2 mass assignments

Information condensed in just 2 observables: a single candidate invariant mass and ratio of momenta: looser correlation and easier to handle


Peak composition handle 1: kinematics

 $\pi\pi$ -mass vs signed momentum imbalance: (1- p_{\min}/p_{\max}) q_{\min}

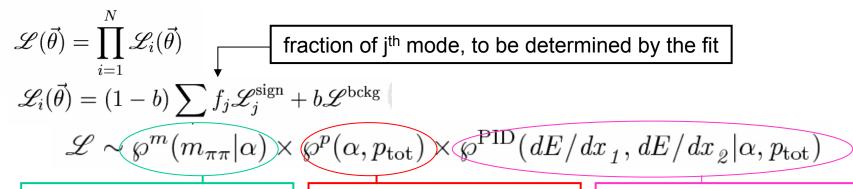
discriminates among modes (and among flavors in $K\pi$ modes).

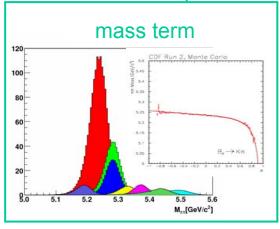

Peak composition handle 2: dE/dx

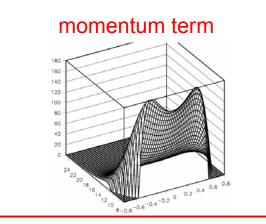
~95% pure K and π samples from ~300,000 decays:

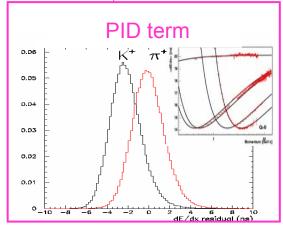
$$D^{*+} \longrightarrow D^0 \pi^+ \longrightarrow [K^-\pi^+] \pi^+$$

Strong *D**+ decay tags the *D*⁰ flavor. dE/dx accurately calibrated over tracking volume and time.

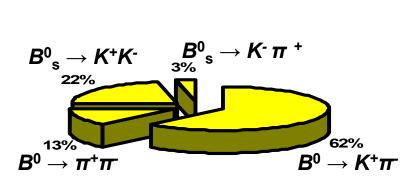

1.4 σ K/ π separation at p > 2 GeV

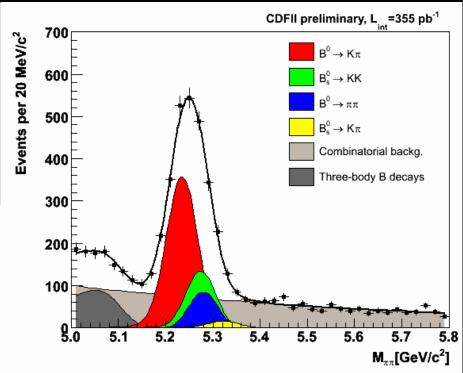

(≡ 60% of "perfect" separation)


~11% residual correlation from gain/baseline common fluctuations included in the fit of composition


Fit of composition

Un-binned ML fit that uses kinematic and PID information from 5 observables

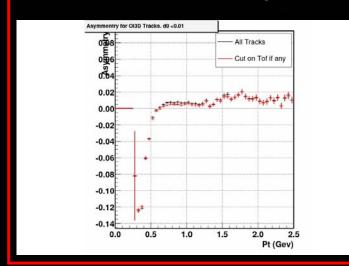



Signal shapes: from MC and analytic formula Background shapes: from data sidebands

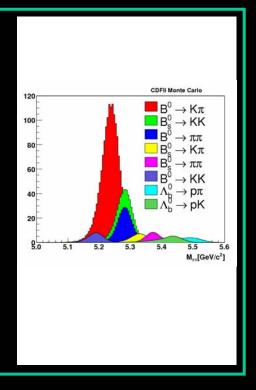
sign and bckg shapes from $D^0 \longrightarrow K^-\pi^+$

Uncorrected fit results

mode	fraction [%]	yield
$B^0 \to \pi^+\pi^- + \overline{B}^0 \to \pi^+\pi^-$	13.2 ± 1.4	313 ± 34
$B_s^0 \to K^-\pi^+ + \overline{B}_s^0 \to K^+\pi^-$	2.7 ± 1.3	64 ± 30
$B_s^0 \to K^+K^- + \overline{B}_s^0 \to K^+K^-$	22.0 ± 1.6	523 ± 41
$B^0 \to K^+\pi^- + \overline{B}^0 \to K^-\pi^+$	62.1 ± 1.7	1475 ± 60
$B^0 \to K^+\pi^-$		787 ± 42
$\overline{B}^0 \to K^- \pi^+$		689 ± 41

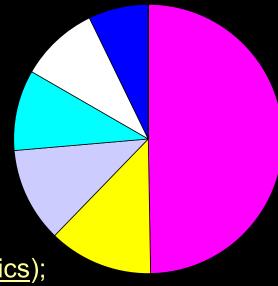

$$A_{\text{CP}}\Big|_{\text{RAW}} = \frac{N_{\text{raw}}(\overline{B}^0 \to K^-\pi^+) - N_{\text{raw}}(B^0 \to K^+\pi^-)}{N_{\text{raw}}(\overline{B}^0 \to K^-\pi^+) + N_{\text{raw}}(B^0 \to K^+\pi^-)} = -0.066 \pm 0.039$$

Correct the fit result for trigger, acceptance, and selection efficiency to convert it into a measurement


Extraction of asymmetry

$$A_{\mathsf{CP}} \ = \ \frac{N(\overline{B}^0 \to K^-\pi^+) \Big|_{\mathsf{raw}} \left(\frac{\epsilon_{kin}(B^0 \to K^+\pi^-)}{\epsilon_{kin}(\overline{B}^0 \to K^-\pi^+)} - N(B^0 \to K^+\pi^-) \Big|_{\mathsf{raw}}}{N(\overline{B}^0 \to K^-\pi^+) \Big|_{\mathsf{raw}} \left(\frac{\epsilon_{kin}(B^0 \to K^+\pi^-)}{\epsilon_{kin}(\overline{B}^0 \to K^-\pi^+)} + N(B^0 \to K^+\pi^-) \Big|_{\mathsf{raw}}}{\epsilon_{kin}(\overline{B}^0 \to K^-\pi^+)} \right)}$$

A < 2% charge asymmetry affects the CDFII detector and tracking code.



Only the different K^+/K^- nuclear interaction rate with the tracker material matters. Effect is under control down to 0.5% in CDF paper on $A_{CP}(D^0 \rightarrow h^+h^+)$. We used the same procedure to extract the ratio of efficiencies. ~ 1% correction

Dominant systematic uncertainties

Total systematic uncertainty is 0.7%, much smaller than the 3.9% statistical uncertainty.

- dE/dx model (partially reduces with statistics);
- nominal B-meson masses input to the fit (reduces with statistics);
- mass-resolution model;
- global scale of masses;
- charge-asymmetries in background;
- combinatorial background model.

FPCP - April 9th 2006 Diego Tonelli, CDF

Asymmetry Result

$$A_{\mathsf{CP}}^{\mathsf{CDF}}(B^0 \to K^+\pi^-) = -0.058 \pm 0.039 \; (stat.) \pm 0.007 \; (syst.)$$

 $A_{CP} \sim 1.5\sigma$ different from 0, and compatible with *B*-factories results:

$$A_{\mathsf{CP}}^{\mathsf{Belle}}(B^0 \to K^+\pi^-) = -0.113 \pm 0.022 \ (stat.) \pm 0.008 \ (syst.) \quad A_{\mathsf{CP}}^{\mathsf{Babar}}(B^0 \to K^+\pi^-) = -0.133 \pm 0.030 \ (stat.) \pm 0.009 \ (syst.)$$

B-factories statistical uncertainty is <u>just ~20% better</u> with same sample size and systematic uncertainties are comparable.

With data already available on disk, we expect ~2.5% statistical uncertainty: CDF soon very competitive (summer).

In same data, we expect first observation of $B^0_s \longrightarrow K^-\pi^+$ decay: will measure its BR and CP asymmetry that is expected large. NP-check proposed by Lipkin (Lipkin, Phys.Lett.B621:126, 2005).

$B_s^0 \to K^+K^-$ lifetime analysis

Add lifetime information to the fit of composition:

$$\mathcal{L} \sim \wp^m(m_{\pi\pi}|\alpha)\wp^p(\alpha,p_{\mathrm{tot}})\wp^{\mathrm{PID}}(dE/dx_1,dE/dx_2|\alpha,p_{\mathrm{tot}})\wp^{\mathrm{life}}(ct).$$

$$\wp^{\mathrm{life}}(ct) = \exp(\mathrm{ct}) \times \mathrm{Gauss}(\mathrm{ct}) \times \varepsilon(\mathrm{ct})$$

$$\mathrm{decay} \quad \mathrm{detector} \quad \mathrm{trigger \ bias}$$

$$\mathrm{smearing}$$

$$\mathrm{trigger \ bias}$$

Trigger bias for signal is extracted from detailed simulation.

Procedure validated in unbiased $B \rightarrow J/\psi X$ decays from dimuon trigger.

Check that lifetime fits of samples with/without applying track-trigger cuts yield consistent results.

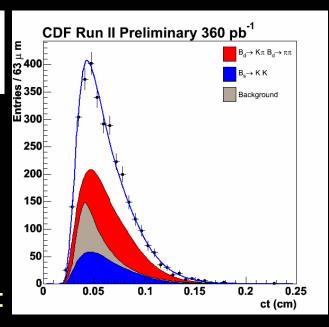
Lifetime p.d.f for background is extracted from higher mass data sideband.

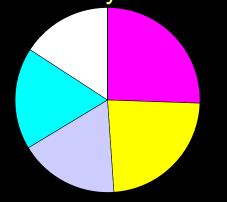

$B^0_s \to K^+K^-$ lifetime results

	$c\tau(B^0)$ [μ m]	$c\tau(B_s^0 \to K^+K^-) \ [\mu m]$
both free	452 ± 24	463 ± 56
$c\tau(B^0)$ constrained to PDG	_	458 ± 53

 $B_s^0 \rightarrow K^+K^-$ predicted ~95% CP-even: has the lifetime of "light B^0 _s":

$$\tau_L = 1.53 \pm 0.18 \; (stat.) \pm 0.02 \; (syst.) \text{ps}$$


Combine with HFAG average $(\tau_L^2 + \tau_H^2)/(\tau_L + \tau_H)$:

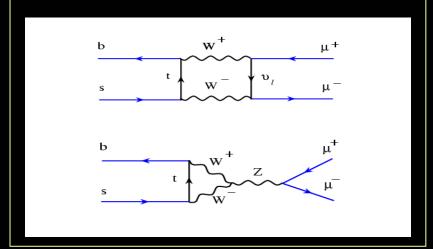


input $p_T(B)$ in simulation; in trigger-bias.

lifetime model of background;

Dominant systematics:

FPCP - April 9th 2006

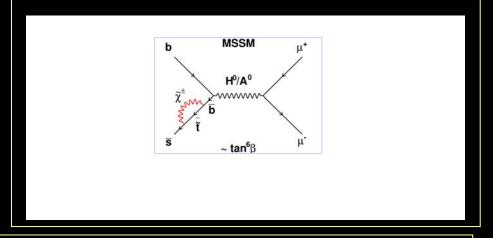

Search for FCNC decays $B^{0}/B^{0}_{s}\rightarrow \mu^{+}\mu^{-}$

Search for $B^0/B^0 \rightarrow \mu^+\mu^-$ decays

STANDARD MODEL

FCNC strongly suppressed. expected BR($B^0_s \to \mu^+ \mu^-$) ~ 10⁻⁹: a factor ~100 below CDF reach.

 $B^0 \rightarrow \mu^+ \mu^-$ further suppressed by factor $|V_{to}/V_{ts}|^2$



SUSY

NP contributions enhance BR by few orders of magnitude, allowing observation at the Tevatron.

MSSM: BR ~ $(\tan\beta)^6$: 100 times larger

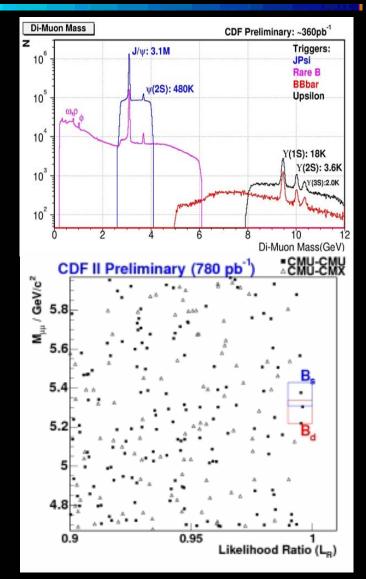
RPV: tree diagram allowed

Only CDF can observe both B_s^0 and B_s^0 and distinguish between them

FPCP - April 9th 2006

Search for $B^0/B^0_s \rightarrow \mu^+\mu^-$ decays

Search in sample from "rare" di-muon trigger:


Use a Likelihood-Ratio discriminant to distinguish signal from background

LR uses: (a) decay-length, (b) isolation of the B, (c) 3D-pointing of the B to the \overline{pp} vertex

Understand the background in search window, and measure BR (or set limit) with respect to normalization $B^+ \rightarrow J/\psi K^+$ mode.

No signal found, world best upper limits set:

BR(
$$B^0_s \rightarrow \mu^+ \mu^-$$
) < 8 × 10⁻⁸ @ 90% CL
BR($B^0 \rightarrow \mu^+ \mu^-$) < 2.3 × 10⁻⁸ @ 90% CL

Summary

As data keep flowing, CDF impact on FP becomes more and more crucial: Charm-less two-body B decays, a case-study that shows how CDF is competitive with (B^0) and complementary to (B^0_s) B-factories.

- -direct CPV in $B^0 \longrightarrow K^-\pi^+$, small systematics, and as yet available statistics places CDF among the best by this summer.
- -Unique opportunity to combine with $B_s^0 \longrightarrow K^-\pi^+$ decays.
- -Unique extraction of $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$ in $B^0_{\rm s} \longrightarrow K^-K^+$ (already one of world best results)
- -Unique simultaneous sensitivity to $B^0/B^0_s \rightarrow \mu^+\mu^-$ (already world best results)

Latest results on B⁰_s mixing Jónatan Piedra, today at 17.00

Quantum numbers of X(3872) llya Kravchenko, tomorrow at 11.00

 $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ lifetime Jónatan Piedra, today at 17.00

World best B⁺_c mass
Ilya Kravchenko, tomorrow at 11.00

b-hadron production fractions llya Kravchenko, tomorrow at 11.00

World best B⁺_c lifetime llya Kravchenko, tomorrow at 11.00

FPCP - April 9th 2006

ADDITIONAL MATERIAL